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Abstract An optically active bulky dicarboxylic acid (2S)-4-[(4-methyl-2-

phthalimidylpentanoylamino)benzoylamino]isophthalic acid (1), was synthesized in

five step starting from L-leucine and phthalic anhydride. A set of new aromatic

polyamides containing (N-phthaloyl-L-leucine) units was synthesized by the direct

one-pot phosphorylation polycondensation of diacid 1 with various aromatic dia-

mines in the presence of different imidazolium salts and triphenyl phosphite (TPP)

without adding extra compounds (Method I). This method was compared with a

classical method in a medium consisting of TPP, N-methyl-2-pyrrolidinone, pyri-

dine, and calcium chloride (Method II) and the results are comparable. The poly-

mers were produced with high yields and from moderate to high inherent viscosities

(0.43–0.81 dL g-1). Amino acid existence in this backbone results in optically

active polymers. The chemical structures of some of these polymers were charac-

terized by 1H-NMR and elemental analysis, and all of them with FT-IR and specific

rotation tools. By introduction of bulky and flexible clusters in these new polya-

mides pendent group; make them soluble in most polar aprotic solvents.

Keywords Polyamides � Ionic liquid � Amino acid � Optically active polymers �
Thermal gravimetric analysis (TGA) � Green chemistry

Introduction

Owing to their excellent balance of thermal and mechanical properties, aromatic

polyamides (PA)s have received special importance as polymeric materials for

advanced technologies [1]. They are extensively applied as high-temperature
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resistant polymers, while preserving their structural veracity, and an excellent

grouping of chemical, physical and mechanical properties such as chemical

resistance, and good tensile properties. On the other hand, generally they have the

ordinary problem of being hard to process owing to their infusibility and poor

solubility in organic solvents [2–5]. Therefore, much effort has been made to

modify the structure of PAs in order to have better properties in terms of both

solubility and processability with protection of their high thermal stability [6, 7].

Several approaches have been investigated in attempting to improve the solubility

of PAs include the addition of pendant groups to the polymeric backbone,

introduction of different heterocyclic rings into the macromolecular chains of PAs,

preparation of copolymers such as poly(amide–imide)s, poly(amide–ester–imide)s,

and incorporation of bulky substituents or flexible units within the parent chain

[6–11].

The direct polycondensation between diacids and diamines is a recognized

technique for the preparation of PAs with high molecular weight. In this technique

many volatile aprotic organic solvents such as N-methyl-2-pyrrolidone (NMP),

N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), activating agent

such as triphenyl phosphite (TPP), CaCl2, and pyridine (Py) have been used. When

this technique is applied in industry, it will produce a large amount of toxic waste.

Therefore, there is a need for the replacement of these solvents with eco-friendly,

nonvolatile solvents for the preparation of PAs.

Several environmentally benign procedures have successfully been developed to

avoid, or at least minimizing of using environmentally damaging solvents used on a

large-scale, especially those that are volatile and difficult to handle. Ionic liquids

(ILs) have recently gained recognition as possible environmentally friendly

alternative solvents in various chemical processes. ILs are viewed as a novel class

of green benign solvents, which promise to have widespread application in industry,

possibly replacing currently used organic solvents, due to unique properties such as

negligible vapor pressures, high thermal and chemical stability, broad liquid

temperature ranges, an excellent ability to dissolve organic compounds, salts and

metals, facile recyclabilities and high specific solvent abilities [12–14]. This unique

set of properties has earned ILs recognition as environmentally benign alternatives

to traditional organic solvents [15, 16]. On the other hand, the synthesis of polymers

in ILs media is also of significant scientific interest. Direct polyamidation reaction

in ILs is a recently developed method of polymerization. The polyamidations in ILs

proceed as one-pot path-way reactions and have the advantages of direct

polycondensation [17–22].

The growing knowledge of the importance of chirality in the framework of

biological activity has stimulated an increasing demand for well-organized

approaches for the synthesis of enantiomerically pure compounds such as

pharmaceutical and agricultural chemicals. The existence of asymmetric centers

along polymeric chains awards macromolecules special structural and physical

properties. Recently, we have synthesized a variety of optically active polymers by

insertion of optically active segments in polymer’s backbone by diverse techniques

[23–30].

624 Polym. Bull. (2009) 63:623–635

123



In the work presented here, we wish to report a green, safe and fast method for

preparation of thermostable and optically active aromatic PAs bearing amide–imidic

linkage in the macromolecule backbone with the aim of removing the use of volatile

organic compound. The solubility, physical and thermal properties of the polymers

are presented in this article.

Experimental

Materials

All chemicals were purchased from Fluka Chemical Co. (Buchs, Switzerland),

Aldrich Chemical Co. (Milwaukee, WI), Riedel-deHaen AG (Seelze, Germany) and

Merck Chemical Co. DMAc and NMP were dried over BaO and then were distilled

under reduced pressure. 1,5-Naphthalenediamine (2e), and 4,40-diaminodiphenyl-

methane (2b) were purified by recrystallization from water. Benzidine (2d) was

purified by recrystallization from ethanol. 4,40-Diaminodiphenylether (2c), 2,5-

diaminotoluene (2f), 1,4-phenylenediamine (2h), and 1,3-phenylenediamine (2g)

were purified by sublimation. All room temperature ILs were prepared by reported

procedure [19].

Equipments

Proton nuclear magnetic resonance (1H-NMR, 500 MHz) spectra were recorded in

DMSO-d6 solution using a Bruker (Germany) Avance 500 instrument. Proton

resonances are designated as singlet (s), doublet (d), doublet of doublet (dd) and

multiplet (m). FT-IR spectra were recorded on Jasco-680 (Japan) spectrophotom-

eter. The spectra of solids were obtained using KBr pellets. The vibrational

transition frequencies are reported in wavenumbers (cm-1). Band intensities are

assigned as weak (w), medium (m), strong (s) and broad (br). Inherent viscosities

were measured by using a Cannon-Fenske Routine Viscometer (Germany) at

concentration of 0.5 g dL-1 at 25 �C. Specific rotations were measured by a Jasco

Polarimeter (Japan). Thermal gravimetric analysis (TGA) data for polymers were

taken on a PerkinElmer (Pyris 1) instrument in a nitrogen atmosphere at a rate of

10 �C min-1, and differential scanning calorimetry (DSC) data were recorded at a

rate of 20 �C. Glass transition temperatures (Tg) were read at the middle of the

transition in the heat capacity taken from the heating DSC traces. Elemental

analyses were performed by the Iranian Polymer and Petrochemical Institute,

Tehran, Iran.

Monomer synthesis

(2S)-4-[(4-Methyl-2-phthalimidylpentanoylamino)benzoylamino]isophthalic acid

(1) was synthesizes according to our previous work [31].
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Polymers synthesis

Polymerization under oil bath heating in RTIL as a reaction medium

The PAs were prepared by the following general procedure: as an example for the

preparation of PA5cI, 0.100 g (0.244 mmol) of diacid 1 and 0.061 g (0.244 mmol)

of diamine 2c were dissolved in 0.150 g of 1,3-diisopropylimidazolium bromide

(1,3-(isopr)2im]Br), then 0.13 mL (0.488 mmol) of TPP was added. The whole

solution was heated at 110 �C for 2.5 h. The solution becomes more viscous by

progress of the polymerization reaction. The resulting product was dissolved in

1 mL of DMF and was poured into a beaker containing 30 mL of methanol

(ethanol), or methanol (ethanol) was directly added to the reaction vessel without

using DMF. The obtained solid was filtered off and dried under vacuum to give

0.146 g (94%) of PA5cI.

Polymerization under oil bath heating in NMP as a reaction medium

The PAs were prepared by the following general procedure. Taking PA5cII as an

example, a mixture of 0.06 g (0.244 mmol) of diamine 2c, 0.10 g (0.244 mmol) of

diacid 1, 0.060 g of CaCl2, 0.15 mL of pyridine, 0.14 mL of TPP, and 0.5 mL of

NMP was placed into the flask equipped with a mechanical stirrer and a condenser.

The mixture blanketed by nitrogen was stirred and refluxed for 5 h. At the end of the

reaction, the obtained polymer solution was trickled into 20 mL of stirred methanol

or ethanol. The white-stringy polymer was washed thoroughly with hot water and

methanol, collected by filtration and dried at 100 �C under reduced pressure to give

0.138 g (82%) of PA5cII.

PA5a FT-IR (KBr): 3369 (s), 3105 (w, sh), 2957 (w), 1774 (w), 1714 (s), 1668

(m), 1590 (s), 1525 (m), 1447 (w), 1404 (m), 1319 (m), 1249 (m), 1183 (m), 1015

(m), 962 (w, br), 879 (w), 857 (w), 822 (w), 757 (s), 692 (w) cm-1.

PA5b FT-IR (KBr): 3299 (s, br), 3041 (w), 2958 (s), 2890 (m), 1775 (w), 1719 (s),

1668 (m), 1594 (s), 1468 (w), 1409 (m), 1384 (s), 1254 (m, sh), 1246 (m), 1187 (m),

954 (w), 876 (m), 757 (s), 691 (w), 530 (m) cm-1. 1H-NMR (500 MHz, DMSO-d6):

d 0.89–0.94 (d, 6H, CH3, J = 7.21 Hz), 1.36–1.38 (m, 1H, CH), 1.95–1.98 (m, 1H,

CH2), 2.10–2.12 (m, 1H, CH2), 3.96 (s, 2H, CH2), 4.87–4.89 (dd, 1H, CH,

J1 = 6.64, J2 = 6.92 Hz), 6.90–7.20 (m, 4H, CH), 7.62–7.93 (m, 12H, CH), 8.01 (s,

1H, CH), 8.32 (s, 4H, CH), 10.21 (s, br, NH),10.35 (s, br, NH). ANAL. Calcd for

C42H35N5O6: 69.36% C; 4.98% H; 9.92% N. Found: 68.14% C; 4.96% H; 9.62% N.

PA5c FT-IR (KBr): 3315 (m), 2957 (m), 2870 (w), 1774 (w), 1713 (s), 1662 (m),

1598 (m), 1522 (s), 1468 (w), 1385 (m), 1314 (w), 1246 (m), 1184 (w), 1077 (m),

958 (m), 853 (m), 759 (w), 721 (s), 529 (w) cm-1. 1H-NMR (500 MHz, DMSO-d6):

d 0.86–0.88 (d, 6H, CH3, J = 7.14 Hz), 1.49–1.50 (m, CH), 2.01–2.08 (m, 1H, CH),

2.17–2.19 (m, 1H, CH), 4.93–4.96 (dd, 1H, CH, J1 = 6.57, J2 = 6.85 Hz), 7.01–

7.12 (m, 4H, CH), 7.71–7.97 (m, 12H, CH), 8.10 (s, 1H, CH), 8.41 (s, 2H, CH),

10.01 (s, br, NH), 10.48 (s, br, NH).
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PA5d FT-IR (KBr): 3413 (m), 3013 (w), 2957 (m), 2870 (w), 1774 (w), 1713 (s),

1662 (m), 1502 (s), 1462 (w), 1385 (s), 1314 (w), 1244 (m), 1184 (w), 1072 (m),

901 (w), 890 (w), 720 (m), 692 (w), 529 (m) cm-1.

PA5e FT-IR (KBr): 3297 (m), 3095 (w), 2957 (m), 1775 (w), 1713 (s), 1660 (s),

1596 (m), 1513 (w), 1468 (m), 1403 (s), 1315 (s), 1248 (m), 1180 (w), 1108 (m),

880 (w), 759 (w), 721 (w), 614 (w), 530 (m) cm-1. ANAL. Calcd for C39H31N5O6:

68.31% C; 5.03% H; 10.12% N. Found: 67.51% C; 5.16% H; 9.94% N.

PA5f FT-IR (KBr): 3248 (m), 2957 (m), 2870 (w), 1774 (w), 1714 (s), 1661 (m),

1597 (s), 1494 (w), 1384 (s), 1334 (w), 1246 (s), 1075 (m), 940 (w), 890 (w), 780

(m), 660 (w), 530 (m) cm-1.

PA5g FT-IR (KBr): 3414 (m), 3034 (w), 2958 (m), 1774 (w), 1714 (s), 1661 (s),

1605 (s), 1536 (m), 1445 (w), 1384 (m), 1249 (m), 1185 (w), 1071 (w, br), 879 (w),

761 (w), 720 (w), 616 (w), 530 (m) cm-1.

PA5h FT-IR (KBr): 3422 (s), 3140 (w), 2957 (m), 2924 (m), 1775 (w), 1714 (s),

1665 (m), 1596 (w), 1445 (m), 1387 (m), 1316 (m), 1248 (m), 1222 (s), 1186 (w),

1073 (m), 878 (w), 761 (w), 721 (w), 692 (m), 529 (m) cm-1.

Results and discussion

Polymer synthesis

Optically active aromatic PA5a–PA5h containing bulky pendent group were

synthesized from the reaction of optically active dicarboxylic diacid 1 with aromatic

diamines 2a–2h by the direct polycondensation procedure using two different

methods (Scheme 1).

From a technological viewpoint, the use of an organic solvent in large-scale

production is not very affable. So we carried out the polymerization reaction in

imidazolium types ILs in order to description a safe, straightforward and efficient

method for polymerization reaction. At first, in order to choose the best IL for the

preparation of PAs, the reaction of monomer 1 with 2h was carried out in different

synthetic ILs such as: 1,3-dipropylimidazolium bromide, 1,3-diisopropylimidazo-

lium bromide, 1,3-dibenzylimidazolium chloride, 1,3-dibenzylimidazolium

bromide, 1,3-dibutylimidazolium bromide, 1,3-dipentylimidazolium bromide, 1,3-

diheptylimidazolium bromide, 1,3-dialylimidazolium chloride and 1,3-dialylimi-

dazolium bromide and in the absence of any IL under oil bath (Scheme 2) and the

results are shown in Table 1. According to Table 1 the best inherent viscosity and

yield was obtained when [1,3-(isopr)2im]Br was used as IL for direct polyconden-

sation. So [1,3-(isopr)2im]Br was selected for other polymerization. It is interesting

to mention that, the polymers were not obtained in the absence of either of ILs or

TPP, so the presence of both components are necessary for polyamidation reactions,

and consequently ILs play as a catalyst as well as solvent for these reactions. Since

the amounts of ILs were used for each reaction is very low, we did not recycle them.

Otherwise, these ILs could be easily separate from resulting polymers and reused.
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Thus, an efficient, simplified and benign procedure for the preparation of PAs was

carried out via direct polyamidation reaction of chiral diacid 1 with different

aromatic diamines 2a–2h.

The polymerization reaction was performed using oil bath heating by TPP and

1,3-(isopr)2im]Br as a condensing agent (Method I) and also was carried out under

same conditions via Yamazaki phosphorylation reaction, using TPP/Py/NMP/CaCl2
as a condensing agent (Method II) and the results are shown in Tables 2 and 3.

At first polymerization reaction was carried out under oil bath in the presence of

[1,3-(isopr)2im]Br and TPP (Method I), and it took 2.5 h for the completion of the

reaction. At the end of polymerization, the resulting viscous mixtures were

precipitated in methanol (ethanol), which gave aromatic PA5aI–PA5hI in high

yields and inherent viscosities and the result are shown in Table 2. The inherent

viscosities of the resulting polymers under chosen conditions were in the range of

0.45–0.81 dL g-1 and the yields were 80–94%. In order to compare this method

with Yamazaki phosphorylation reaction (Method II), we also performed the

polymerization reactions under oil bath heating conditions using NMP as a solvent
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Scheme 1 Polycondensation reactions of monomer 1 with different diamines
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and it took 5 h at 110 �C for the completion of the reaction. The reaction yields and

viscosity of obtained PAs in this method were between 83–94% and 0.41–

0.74 dL g-1, respectively (Table 3).

The abovementioned results demonstrate that in Method I by replacement of a

volatile and toxic organic solvent in the polymerization with a nonvolatile solvent

will reduce losses through evaporation, and it is important that ILs are chemicals

that can be used as solvents in green chemistry processes. The ability of ILs to

dissolve monomers as well as polymers to provide homogeneity and easily separate

from resulting polymers, are some other advantages of using IL systems. The yields

and inherent viscosities of the resulting polymers obtained by both methods are

comparable. The optimum conditions which were obtained in these methods have

been applied for the preparation of other PAs. All of the PAs show optical rotations

++

, ,

,

,

, , ,

,

N

N

Si
H3C

CH3

CH3

RX N N
R R

Si (CH3)3

CH3CH2CH2BrRX: C6H5CH2Cl

CH3(CH2)3CH2Br CH3(CH2)4CH2Br CH3(CH2)5CH2Br

C6H5CH2Br

CH2 CHCH2Br

CH3(CH2)2CH2BrCH3CHCH3

Br

CH2 CHCH2Cl

j4-a4j3-a3

a b c d e

f h i j

X+ X

g

Scheme 2 Synthesis of different ILs

Table 1 The effects of type of ILs on yield and inherent viscosity of the PA5h (Reaction conditions:

2.5 h, 120 �C)

Polymer IL Yield (%) ginh(dL g-1)

PA5h1 No IL No polymer –

PA5h1 4a 80 0.50

PA5h1 4b 80 0.74

PA5h1 4c 76 0.41

PA5h1 4d 78 0.45

PA5h1 4e 74 0.39

PA5h1 4f 68 0.35

PA5h1 4g 75 0.33

PA5h1 4h 65 0.41

PA5h1 4i 76 0.32

PA5h1 4j 70 0.41

Polym. Bull. (2009) 63:623–635 629

123



therefore are optically active. The incorporation of chiral unit into the polymer

structure was confirmed by measuring their specific rotations. The quantity and the

sign of specific rotation of PAs are not predictable because optical rotation is highly

dependent on the chemical structure of the resulting polymeric materials and any

small changes in the structure has substantial random effect on the optical rotation.

Polymer characterization

FT-IR study

The structures of these polymers were confirmed as PAs by means of FT-IR

spectroscopy. All of the polymers were characterized by absorption peak for the

amide N–H groups around 3,300 cm-1. Absorption of amide N–H bonds appeared

around 3,310–3,331 cm-1 (hydrogen band) and the peaks at 1,765 and 1,710 cm-1

(C = O asymmetric and symmetric, respectively, imide group), 1,670 cm-1

(C = O, amide) confirm the presence of different carbonyl groups in the polymer

Table 2 Physical properties of PAs synthesized using ILs as a reaction medium (Method I)

Diamine Polymer

Polymer Yield (%) ginh (dL g-1)a [a]D
25a [a]Hg

25 a

2a PA5aI 93 0.48 ?56.2 ?72.1

2b PA5bI 85 0.64 -48.6 -49.9

2c PA5cI 94 0.52 -54.2 -53.6

2d PA5dI 80 0.45 -41.3 -42.3

2e PA5eI 83 0.66 -53.7 -42.2

2f PA5fI 85 0.72 ?50.6 ?53.6

2g PA5gI 84 0.81 -52.8 -71.9

2h PA5hI 80 0.74 -62.4 -66.5

a Measured at a concentration of 0.5 g dL-1 in DMF at 25 �C

Table 3 Physical properties of PAs synthesized in NMP as a reaction medium (Method II)

Diamine Polymer

Polymer Yield (%) ginh (dL g-1)a [a]D
25a [a]Hg

25 a

2a PA5aII 94 0.46 -32.3 -31.3

2b PA5bII 84 0.57 -40.7 -32.2

2c PA5cII 86 0.43 -47.6 -53.6

2d PA5dII 89 0.53 ?29.8 ?40.9

2e PA5eII 88 0.54 -70.4 -85.5

2f PA5fII 83 0.67 -44.2 -35.9

2g PA5gII 85 0.72 ?38.6 -25.9

2h PA5hII 90 0.74 -72.4 -57.2

a Measured at a concentration of 0.5 g dL-1 in DMF at 25 �C
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chain. The absorption bands appeared around 3,013–3,100 and 2,850–2,930 cm-1

are related to the corresponding aromatic and aliphatic C–H stretching vibration,

respectively. All of them exhibited strong absorptions at 1,384 and 718–720 cm-1

that show the presence of the imide heterocycle ring in these polymers. For example

the FT-IR spectrum of PA11cI is shown in Fig. 1.

1H-NMR study

The 1H-NMR spectra of soluble PA5cI is shown in Fig. 2. In the 1H-NMR spectra

of these polymers, the resonance of the diastereotopic CH3 protons groups of

L-leucine appeared as a broad multiplet peak at 0.90–0.94 ppm. The resonance of

the diastereotopic hydrogens bonded to neighbor carbon of chiral center appeared in

the range of 2.05–2.07, 2.24–2.26 ppm as two discrete multiplets peaks. The proton

of the chiral center appeared as multiplets in the range of 4.97–5.00 ppm. The

resonance of aromatic protons appeared in the range of 6.93–8.45 ppm. Appear-

ances of the N–H protons of amides groups at 10.30 and 10.45–10.51 ppm as three

peaks indicate the presence of amide group in the polymers side chain, as well as

main chain. The aforementioned results show that PAs were synthesized

successfully.

Thermal properties

DSC and TGA were used to evaluate the thermal properties of the resulting PAs.

The thermal behavior data of some of the PAs such as: PA5cI, PA5cII, PA5hI and

PA5hI are given in Table 4. The glass transition temperature (Tg) values of the

PA5cI, PA5hI were obtained from DSC measurements. PA5cI and PA5hI showed

Tg values in the ranges of 155 and 168 �C, respectively. The thermal stabilities of

these PAs were evaluated by TGA under nitrogen with a 10% weight loss

temperature (T10%) for comparison. These are summarized in Table 4. The

decomposition temperatures at a 10% weight loss of PA5cI, PA5cII, PA5hI and

Fig. 1 FT-IR (KBr) spectrum of PA5cI
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PA5hI were recorded in the range of 385–453 �C in nitrogen. PA5hI and PA5hII
exhibited higher T10 values than their analogous PA5hI and PA5hII counterparts

and this increase may be a result of relatively higher rigidity of the molecular

chains. According to Table 4, it is clear that the PA5hI and PA5hII (based on

1,4-phenylenediamine) have higher thermal stability than the other PAs. It could be

pertained to aromatic, rigid structure of diamines for PA5hI and PA5hII compare to

flexible structure of 4,40-diaminodiphenylether for PA5cI and PA5cII. Figure 3

shows the TGA thermograms of PA5cI, PA5hI, which indicate two steps thermal

degradation. The results reveal that PAs are thermally stable up to 350 �C.

Fig. 2 1H-NMR (500 MHz) spectrum of PA5cI in DMSO-d6 at RT

Table 4 Thermal properties of PAs

Polymer Decomposition temperature (�C) Char yield (%)b Tg
c (�C)

T5
a T10

a

PA5cI 348 385 56 156

PA5cII 351 386 59 –

PA5hI 400 451 68 168

PA5hII 403 454 66 –

a Temperature at which 5 and 10% weight loss were recorded by TGA at heating rate of 10 �C min-1 in

a N2 atmosphere
b Weight percent of the material left undecomposed after TGA at maximum temperature 800 �C in a N2

atmosphere
c Glass transition temperature was recorded at a heating rate of 20 �C min-1 in a nitrogen atmosphere
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Solubility of PAs

One of the purposes of this study was producing modified PAs with enhanced

solubility. The incorporation of bulky side groups into the polymer structure,

reduces molecular packing, and restricts the formation of interchain hydrogen

bonds, which are responsible of the PAs intractability. Because of flexible bulky

groups in polymer’s pendent, these polymers are expected to have higher solubility.

The solubility of PAs (polymer synthesis using both methods) was tested at a

concentration of 0.5 g dL-1 and at ambient temperature in various solvents. Almost

all of the PAs are soluble in organic polar aprotic solvents such as DMF, DMAc,

dimethyl sulfoxide, NMP and polar protic solvent such as H2SO4 at room

temperature, and are insoluble in solvents such as chloroform, methylene chloride,

methanol, ethanol and water.

Conclusions

Ultimate goals of this investigation were the synthesis of a series of organosoluble

and optically active aromatic PAs that possess several advanced characteristics such

as optical activity, possession of wholly aromatic backbone and organosolubility

under green condition using imidazolium type ILs. This environmentally friendly

green technique is a safe, fast, high yielding, economical and simple manipulation

route, which avoids the usage of volatile organic solvents and catalyst. Optical

activity of resulting PAs, make them the potentially useful candidates as the new

chiral stationary phases in HPLC techniques. Wholly aromatic backbones of PAs

provide some superior properties such as stability toward thermal shocks, chemical

resistances and mechanical strength and at last, organosolubility of PAs removes the

Fig. 3 TGA thermograms of PA5cI and PA5hI under N2 atmosphere
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processing difficulties which regularly are associated with handing out of the wholly

aromatic PAs. Potential applications of amino acid-based polymers include drug

delivery agent, chiral stationary phases for resolution of enantiomers in chromato-

graphic techniques and biomaterials.
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